skip to main content


Search for: All records

Creators/Authors contains: "Shams-Ansari, Amirhassan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thin-film lithium niobate (TFLN) is a promising electro-optic (EO) photonics platform with high modulation bandwidth, low drive voltage, and low optical loss. However, EO modulation in TFLN is known to relax on long timescales. Instead, thermo-optic heaters are often used for stable biasing, but heaters incur challenges with cross-talk, high power, and low bandwidth. Here, we characterize the low-frequency (1 mHz to 1 MHz) EO response of TFLN modulators, investigate the root cause of EO relaxation and demonstrate methods to improve bias stability. We show that relaxation-related effects can enhance EO modulation across a frequency band spanning 1kHz to 20kHz in our devices – a counter-intuitive result that can confound measurement of half-wave voltage (Vπ) in TFLN modulators. We also show that EO relaxation can be slowed by more than 104-fold through control of the LN-metal interface and annealing, offering progress toward lifetime-stable EO biasing. Such robust EO biasing would enable applications for TFLN devices where cross-talk, power, and bias bandwidth are critical, such as quantum devices, high-density integrated photonics, and communications.

     
    more » « less
  2. Abstract

    Integrated electro-optic (EO) modulators are fundamental photonics components with utility in domains ranging from digital communications to quantum information processing. At telecommunication wavelengths, thin-film lithium niobate modulators exhibit state-of-the-art performance in voltage-length product (VπL), optical loss, and EO bandwidth. However, applications in optical imaging, optogenetics, and quantum science generally require devices operating in the visible-to-near-infrared (VNIR) wavelength range. Here, we realize VNIR amplitude and phase modulators featuringVπL’s of sub-1 V ⋅ cm, low optical loss, and high bandwidth EO response. Our Mach-Zehnder modulators exhibit aVπLas low as 0.55 V ⋅ cm at 738 nm, on-chip optical loss of ~0.7 dB/cm, and EO bandwidths in excess of 35 GHz. Furthermore, we highlight the opportunities these high-performance modulators offer by demonstrating integrated EO frequency combs operating at VNIR wavelengths, with over 50 lines and tunable spacing, and frequency shifting of pulsed light beyond its intrinsic bandwidth (up to 7x Fourier limit) by an EO shearing method.

     
    more » « less
  3. Diamond offers good optical properties and hosts bright color centers with long spin coherence times. Recent advances in angled-etching of diamond, specifically with reactive ion beam angled etching (RIBAE), have led to successful demonstration of quantum photonic devices operating at visible wavelengths. However, larger devices operating at telecommunication wavelengths have been difficult to fabricate due to the increased mask erosion, arising from the increased size of devices requiring longer etch times. We evaluated different mask materials for RIBAE of diamond photonic crystal nanobeams and waveguides, and how their thickness, selectivity, aspect ratio and sidewall smoothness affected the resultant etch profiles and optical performance. We found that a thick hydrogen silesquioxane (HSQ) layer on a thin alumina adhesion layer provided the best etch profile and optical performance. The techniques explored in this work can also be adapted to other bulk materials that are not available heteroepitaxially or as thin films-on-insulator. 
    more » « less
  4. Existing nonlinear-optic implementations of pure, unfiltered heralded single-photon sources do not offer the scalability required for densely integrated quantum networks. Additionally, lithium niobate has hitherto been unsuitable for such use due to its material dispersion. We engineer the dispersion and the quasi-phasematching conditions of a waveguide in the rapidly emerging thin-film lithium niobate platform to generate spectrally separable photon pairs in the telecommunications band. Such photon pairs can be used as spectrally pure heralded single-photon sources in quantum networks. We estimate a heralded-state spectral purity of >94% based on joint spectral intensity measurements. Further, a joint spectral phase-sensitive measurement of the unheralded time-integrated second-order correlation function yields a heralded-state purity of(86±<#comment/>5)%<#comment/>.

     
    more » « less
  5. Abstract Diamond has attracted great interest as an appealing material for various applications ranging from classical to quantum optics. To date, Raman lasers, single photon sources, quantum sensing and quantum communication have been demonstrated with integrated diamond devices. However, studies of the nonlinear optical properties of diamond have been limited, especially at the nanoscale. Here, a metasurface consisting of plasmonic nanogap cavities is used to enhance both χ (2) and χ (3) nonlinear optical processes in a wedge-shaped diamond slab with a thickness down to 12 nm. Multiple nonlinear processes were enhanced simultaneously due to the relaxation of phase-matching conditions in subwavelength plasmonic structures by matching two excitation wavelengths with the fundamental and second-order modes of the nanogap cavities. Specifically, third-harmonic generation (THG) and second-harmonic generation (SHG) are both enhanced 1.6 × 10 7 -fold, while four-wave mixing is enhanced 3.0 × 10 5 -fold compared to diamond without the metasurface. Even though diamond lacks a bulk χ (2) due to centrosymmetry, the observed SHG arises from the surface χ (2) of the diamond slab and is enhanced by the metasurface elements. The efficient, deeply subwavelength diamond frequency converter demonstrated in this work suggests an approach for conversion of color center emission to telecom wavelengths directly in diamond. 
    more » « less
  6. Crystals are ubiquitous in nature and are at the heart of material research, solid-state science, and quantum physics. Unfortunately, the controllability of solid-state crystals is limited by the complexity of many-body dynamics and the presence of defects. In contrast, synthetic crystal structures, realized by, e.g.,  optical lattices, have recently enabled the investigation of various physical processes in a controllable manner, and even the study of new phenomena. Past realizations of synthetic optical crystals were, however, limited in size and dimensionality. Here we theoretically propose and experimentally demonstrate optical frequency crystal of arbitrary dimensions, formed by hundreds of coupled spectral modes within an on-chip electro-optic frequency comb. We show a direct link between the measured optical transmission spectrum and the density of states of frequency crystals in one, two, three, and four dimensions, with no restrictions to further expanding the dimensionality. We demonstrate that the generation of classical electro-optic frequency comb can be modeled as a process described by random walks in a tight-binding model, and we have verified this by measuring the coherent distribution of optical steady states. We believe that our platform is a promising candidate for exploration of topological and quantum photonics in the frequency domain.

     
    more » « less
  7. Linking superconducting quantum devices to optical fibers via microwave-optical quantum transducers may enable large-scale quantum networks. For this application, transducers based on the Pockels electro-optic (EO) effect are promising for their direct conversion mechanism, high bandwidth, and potential for low-noise operation. However, previously demonstrated EO transducers require large optical pump power to overcome weak EO coupling and reach high efficiency. Here, we create an EO transducer in thin-film lithium niobate, a platform that provides low optical loss and strong EO coupling. We demonstrate on-chip transduction efficiencies of up toandof optical pump power. The transduction efficiency can be improved by further reducing the microwave resonator’s piezoelectric coupling to acoustic modes, increasing the optical resonator quality factor to previously demonstrated levels, and changing the electrode geometry for enhanced EO coupling. We expect that with further development, EO transducers in thin-film lithium niobate can achieve near-unity efficiency with low optical pump power.

     
    more » « less